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ABSTRACT

Many applications, including communications, test and measurement, and radar,

require the generation of signals with a high degree of spectral purity. One method

for producing tunable, low-noise source signals is to combine the outputs of multiple

direct digital synthesizers (DDSs) arranged in a parallel configuration. In such an

approach, if all noise is uncorrelated across channels, the noise will decrease relative

to the combined signal power, resulting in a reduction of sideband noise and an

increase in SNR. However, in any real array, the broadband noise and spurious

components will be correlated to some degree, limiting the gains achieved by

parallelization. This thesis examines the potential performance benefits that may

arise from using an array of DDSs, with a focus on several types of common DDS

errors, including phase noise, phase truncation spurs, quantization noise spurs, and

quantizer nonlinearity spurs. Measurements to determine the level of correlation

among DDS channels were made on a custom 14-channel DDS testbed.

The investigation of the phase noise of a DDS array indicates that the

contribution to the phase noise from the DACs can be decreased to a desired level

by using a large enough number of channels. In such a system, the phase noise

qualities of the source clock and the system cost and complexity will be the main

limitations on the phase noise of the DDS array.

The study of phase truncation spurs suggests that, at least in our system, the

phase truncation spurs are uncorrelated, contrary to the theoretical prediction. We

believe this decorrelation is due to the existence of an unidentified mechanism in our
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DDS array that is unaccounted for in our current operational DDS model. This

mechanism, likely due to some timing element in the FPGA, causes some

randomness in the relative phases of the truncation spurs from channel to channel

each time the DDS array is powered up. This randomness decorrelates the phase

truncation spurs, opening the potential for SFDR gain from using a DDS array.

The analysis of the correlation of quantization noise spurs in an array of DDSs

shows that the total quantization noise power of each DDS channel is uncorrelated

for nearly all values of DAC output bits. This suggests that a near N gain in SQNR

is possible for an N -channel array of DDSs. This gain will be most apparent for

low-bit DACs in which quantization noise is notably higher than the thermal noise

contribution.

Lastly, the measurements of the correlation of quantizer nonlinearity spurs

demonstrate that the second and third harmonics are highly correlated across

channels for all frequencies tested. This means that there is no benefit to using an

array of DDSs for the problems of in-band quantizer nonlinearities. As a result,

alternate methods of harmonic spur management must be employed.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The direct digital synthesizer (DDS) is a commonly used device in modern radio

frequency (RF) applications. The ability to quickly and directly modify the

frequency control word (FCW), k, enables the DDS topology to offer the fastest

frequency jumping and the finest frequency tuning resolution of any technology

available today in a completely controlled digital environment. As a result, DDSs

have found wide application in fields including communications and test and

measurement equipment. However, the performance of a DDS can be limited by

errors in the signal generation, most notably phase noise and periodic signal

generation errors which manifest as spurs in the frequency domain. As has been the

tendency in other technology industries, we look to improve the performance of a

DDS by placing it in parallel with several other DDSs and aiming to take advantage

of the decorrelation of noise across units to improve signal quality.

The purpose of this thesis is to examine the potential performance benefits that

may arise from using an array of DDSs, with a focus on several types of common

DDS errors. In doing so, this thesis offers and experimentally verifies a concise DDS

phase noise model, which takes into account the possibility of combining the output

of an array of N identical DDSs. It then goes on to define the mechanisms for three

main sources of spurs seen in DDSs: phase truncation spurs caused by the limited

size of the look-up table (LUT), quantization noise spurs caused by the limited
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precision of the digital-to-analog converter (DAC), and spurs caused by

nonlinearities in the DAC. It is our hope that this thesis will serve both as a guide

to the advantages and limitations of using a DDS in a real system and as a survey

of the potential benefits of using an array of DDSs to improve performance in signal

generation systems limited by any one of a number of types of errors.

1.2 Outline

The thesis is organized as follows: Chapter 2 provides an introduction to the

basic structure of a DDS and details the specifications of the particular DDSs used

for the experiments reported in this thesis. It also includes a basic review of the

theory of phase noise and phase noise measurements, along with a brief overview of

correlated and uncorrelated power, that provides context for discussions in later

chapters. Chapter 3 presents and provides experimental verification for a phase

noise model for an array of N identical DDSs, showing that placing multiple DDSs

in parallel can significantly reduce the total output signal phase noise. Chapter 4

identifies the generation mechanisms for phase truncation spurs, quantization noise,

and quantizer nonlinearity spurs, and provides experimental data that demonstrates

their level of correlation in a DDS array. Chapter 5 concludes with general

discussion regarding the effectiveness of using an array of DDSs for improving

system performance and provides some commentary on possibilities for future work.
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CHAPTER 2

BACKGROUND

2.1 Structure of a DDS

The purpose of a direct digital synthesizer (DDS) is to use a single frequency

oscillator to output a sinusoid whose frequency can be tuned rapidly and precisely

over a wide frequency range. The topology of a conventional direct digital

synthesizer (DDS) is shown in Figure 2.1 to consist of five primary elements: a

driving clock, a phase accumulator (PA), a look-up table (LUT), a digital-to-analog

converter (DAC), and a reconstruction filter [1, 2, 3]. At each clock cycle, the PA,

which is effectively a counter, is incremented by an M -bit number k, the frequency

control word (FCW). The phase stored by the PA is converted to a corresponding

sine-wave amplitude by the phase-to-amplitude converter, often through the use of a

simple sine LUT. The digital amplitude value from the LUT is then passed to the

DAC, which converts it to an analog output. As the phase is increased by k each

subsequent clock cycle, the amplitude output steps through the sine LUT,

generating the desired analog sinusoidal signal. The amplitude of this generated

signal is set by digitally scaling the input to the DAC or by a physical attenuator at

the output, and the signal frequency is tuned by varying k. A larger k results in the

PA moving through the period of the LUT more quickly, producing a

higher-frequency sinusoid at the output, while a smaller k moves the accumulator

through the LUT more slowly, yielding a lower frequency output sine wave. The

maximum output frequency of a DDS is determined by its source clock, limited by
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Figure 2.1: Basic structure of a generic direct digital synthesizer.

Nyquist constraints to one half of source frequency, and by the cutoff frequency of

the lowpass reconstruction filter at the output.

A functional block diagram of the DDSs used in these experiments is shown in

Fig. 2.2 [4]. This particular DDS design implements the PA and the LUT with an

FPGA. Because the FPGA runs at half the rate of the source clock, there are two

sets of PAs and LUTs whose outputs, even and odd, are alternated by a double data

rate (DDR) buffer before being sent to the DAC. The following sections describe

both the general purpose and particular specifications of the main components of

our DDS units.

Figure 2.2: Functional block diagram of the DDSs used in this thesis.
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2.1.1 Source Clock

The source clock of the DDS is generally a clock with relatively high spectral

purity, similar in quality to that which would be used as the local oscillator of a

receiver. The source clock used in this particular DDS system was based on a 100

MHz ultra low-phase-noise oven-controlled crystal oscillator (OCXO), which was

amplified and multiplied up to 800 MHz using a frequency doubler and quadrupler.

All of these components were made by Wenzel Associates, Inc.

2.1.2 Phase Accumulator

The PA is an M -bit overflowing counter that stores the digital phase of the

output signal. Its value is added to k and then fed back into the PA on each clock

impulse [2]. The 2M possible values for the PA map to phase values of a sinusoid

uniformly distributed from 0 to 2π. As a result, as the register overflows, a new

period of the output sinusoid begins. The frequency of the sinusoid output for a

given value of k is

fout =
k · fClk

2M
(2.1)

which holds whenever the Nyquist criterion

fout ≤
fClk

2
(2.2)

is satisfied [5]. As (2.1) suggests, the value of k directly determines the output

frequency. Furthermore, by changing the FCW, k, this output frequency can be

adjusted from one input clock impulse to the next while still maintaining phase

continuity, enabling nearly instantaneous frequency tuning [2]. By setting k = 1 in
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(2.1), we find the frequency resolution ∆f to be [5]

∆f =
fClk

2M
(2.3)

The PAs, LUTs, and the DDR buffer are implemented using Xilinx Virtex 4 field

programmable gate arrays (FPGAs). Each FPGA controls two DDS channels. Both

the FCW and the PA are M = 32 bits long.

2.1.3 Look-Up Table

The LUT converts the phase value stored in the PA into an amplitude. Ideally

this operation is given by

s(n) = sin

(
2π

k

2M
n

)
(2.4)

where n is the sample number incremented each clock period (t = nTCk). In

practice, the LUT is a read-only memory (ROM) that performs the function in (2.4)

to a precision determined by the designer. The spectral error resulting from this

finite precision, termed “phase truncation,” has been explored [6, 7, 8] for a single

DDS and will be further expounded upon for multiple DDS channels in Section 4.1.

The output of the LUT then goes through a digital amplitude control. For coarse

attenuation, the amplitude bits are right-shifted. For fine attenuation, the

amplitude is multiplied by a fractional number.

In our DDSs, the function described in (2.4) is approximated by

sin(α + β + χ) = sin(α + β) cos(χ) + cos(α) cos(β) sin(χ)− sin(α) sin(β) sin(χ)

≈ sin(α + β) + cos(α) sin(χ) (2.5)

where both the even and the odd LUTs perform both functions. The most

significant bits (MSBs) are input to the sin(α+ β) portion of the LUT and the least
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significant bits (LSBs) are input to the cos(α) sin(χ) portion of the LUT [9]. This

technique results in a huge compression ratio in the size of the LUT [2]. Each LUT

is 17 bits long and the sinusoid amplitude entries in the LUT are 14 bits wide. A bit

mask at the input of the LUT is included to allow the user to vary the number of

bits extracted from the PA, denoted by W , from 1 to 17 [10], a capability utilized in

the experiments of Section 4.1 to investigate the effect of LUT entry length on

phase truncation errors.

2.1.4 Digital-to-Analog Converter

The output of the LUT is connected to a D-bit DAC, which generates an analog

value corresponding to the D MSBs of the LUT output amplitude. Each of our

DDSs uses a 14-bit Analog Devices 9736 DAC. Another bit mask at the input to the

DAC allows the user to adjust D, the number of bits in the DAC, from 1 to 14 by

truncating the appropriate number of LSBs. This added capability is utilized in the

experiments of Section 4.2 to investigate the effect of number of DAC bits on

quantization noise.

2.1.5 Reconstruction Filter

A lowpass reconstruction filter smooths the output of the DAC and limits the

maximum output frequency to just under half of the frequency of the source clock in

order to satisfy the Nyquist criterion. Typically most filters cut off at a frequency

around 40 percent of the source clock frequency to allow for a transition band below

the Nyquist frequency [3]. Our DDS systems have 7th order Chebyshev

reconstruction filters, which limit the maximum output frequency of each DDS to

360 MHz.
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2.1.6 Calibration and Alignment of an Array of DDSs

Many potential applications of parallel DDS arrays require precise phase and

amplitude alignment of the individual DDS output signals in order to achieve the

maximum array gain in signal quality. In our array, each identical DDS receives a

common 800 MHz clock and trigger. The 3 ns rise time of the trigger is long

compared to the 1.25 ns clock period, with the result being that the trigger does not

reliably occur on the same clock period for every DDS channel. The phase error

caused by this can be calibrated out by applying channel-specific increments to each

PA. In practice, the DDS channels are powered on one at a time with an arbitrary

number of clock cycles in between each channel’s starting. All of the channels are

then reinitialized to the same starting PA value, and each is connected to an

identical analog-to-digital converter (ADC). Because of slight variations in the

DDSs, the cables, and the ADCs among the channels, the outputs measured by the

ADCs typically do not add coherently at this point. To correct this, we then

measure the phases of each DDS’s output frequency using the ADCs and increment

the PA of each DDS until all of the channels are phase-aligned at the input of the

ADC. The output signal amplitudes are measured with the ADCs in similar fashion,

and each channel’s output is digitally attenuated until all of the channels are

amplitude-aligned. This calibration approach achieves excellent phase and

amplitude alignment, with signals generally matched to within 170 µrad and 0.1 dB,

respectively [10].

2.2 Phase Noise

A significant source of spectral broadening in DDSs is phase noise, a measure of

phase instability which can be characterized by the spectral density of phase

fluctuations in a signal [11]. Phase noise can degrade performance in systems using
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common communication schemes such as orthogonal frequency division multiplexing

(OFDM) [12]. The ability to model phase noise accurately allows designers to

identify performance bounds on their communications systems.

2.2.1 Definition

In order to define phase noise mathematically, we start with the basic model for

the instantaneous output of an oscillator,

v(t) = (V0 + ε(t)) sin(2πν0t+ φ(t)) (2.6)

where V0 is the nominal amplitude, ε(t) is the deviation from the nominal

amplitude, ν0 is the nominal frequency, and φ(t) is the phase deviation from the

nominal phase 2πν0t [11]. Deviations ε(t) and φ(t) are random variables. From this

we define the phase spectrum as

Sφ(f) =
φ2
rms(f)

BW
(2.7)

where Sφ(f) has units rad2/Hz and φrms(f) is a root mean square (rms) value in a

specific frequency band offset from the nominal frequency. Most literature

commonly uses the single sideband phase noise, which is defined as [11]

L(f) = Sφ

2
(2.8)

L(f) is usually expressed in decibels (dB) as 10 log10 L(f). For small phase

modulations, φ(t) $1 rad, and moderate to large frequency offsets, f , L(f) is equal

to the ratio of the power density in one phase noise modulation sideband per 1 Hz

bandwidth to the total signal power. As a result, L(f) is commonly expressed in

units of decibels below the carrier in a 1 Hz bandwidth, abbreviated as dBc/Hz.
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Figure 2.3 shows a graphical frequency domain representation of a sinusoid with

phase noise.

Figure 2.3: Graphical representation of a sinusoid with phase noise in the frequency
domain. The phase noise manifests itself as pedestal for the sinusoid.

2.2.2 Effect of Frequency Multiplication

As suggested by the definition of phase noise, it is related to the second moment

of the signal’s phase variation φ(t). Therefore, running a sinusoid through an

N -times frequency multiplier, as shown in Fig. 2.4, multiplies the phase noise of the

input by N2

L2(f) = N2L1(f)

L2(f)[dB] = L1(f)[dB] + 20 log(N) dB (2.9)
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Figure 2.4: Frequency multiplier which outputs a frequency ν2 equal to N -times its
input frequency ν1.

2.2.3 Phase Noise Measurement Process

A block diagram of the phase noise measurement system used in this thesis is

shown in Fig. 2.5. This measurement system uses two sources at the same frequency.

In our case, one of the sources has much lower phase noise than the other. We label

this source as the reference, REF, and make the reasonable assumption that all of

the phase noise measured at the output is contributed by the other source, the

device-under-test (DUT). The measurement system relies on a superheterodyne

technique in which the two sources are input to a double balanced mixer in

quadrature. As a result, the mixer outputs a signal whose power is proportional to

the phase noise of the DUT [13]. This output is low-pass filtered, amplified, and

input into a spectrum analyzer which performs a fast Fourier transform (FFT) [14].

In order to determine the gain constant of the phase noise detector, we use a

calibration approach in which a noise diode injects a well-known amount of

broadband phase noise onto the DUT at a power level significantly greater than the

phase noise of either source. The output value of this noise is measured with the

spectrum analyzer and used to find the gain constant at each offset (or Fourier)

frequency. The noise diode is then turned off and the actual phase noise of the DUT

is measured [14]. The phase noise detector used was a Femtosecond Systems 1000E

which enabled measurements up to 10 MHz offset frequency.

11



Figure 2.5: Block diagram of the phase noise measurement apparatus used in this
thesis.

2.3 Correlated Power Versus Uncorrelated Power

Some of the greatest predicted benefits of DDS arrays are due to the expected

decorrelation of noise across DDS channels. To assess the effect of decorrelation

among multiple channels, we first consider the sum of two voltages from different

channels

v(t) = v1(t) + v2(t)

= V1 cos(ωt+ θ0 + φ1) + V2 cos(ωt+ θ0 + φ2) (2.10)

applied across a 1 Ω resistor where θ0 is an arbitrary starting phase common to all

channels, and φi is a random phase error associated with the ith channel. The

time-average power dissipated in this resistor is

P =
1

2
V 2
1 +

1

2
V 2
2 + V1V2 cos(φ) (2.11)
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where φ = φ2 − φ1. If φ1 and φ2 are independent random variables, uniformly

distributed from 0 to 2π, then the signals v1(t) and v2(t) are uncorrelated. If φ = 0,

the two terms are always in phase. Assuming the channels have equal amplitudes,

V1 = V2 = V , the ratio of the summed fully correlated power to the summed

uncorrelated power is
P2 correlated

P2 uncorrelated
=

2V 2

V 2
= 2 (2.12)

This can be extended to N channel voltage signals. Assuming the magnitude is V

for all signals,
PN correlated

PN uncorrelated
=

N2V 2

NV 2
= N (2.13)

In our analysis of the level of correlation among different channels, we use the

following definition for fully correlated power:

PN correlated =
(√

P1 + ...+
√
PN

)2

(2.14)

which is equivalent to assuming that φ = 0. For uncorrelated power, we use

PN uncorrelated = (P1 + ...+ PN) (2.15)

which assumes that φ is uniformly distributed. Lastly, for the actual total summed

power, we calculate

PN actual = (V1 + ...+ VN)
2 (2.16)

which uses the measured values for φ to determine the relative level of correlation of

the N signals. The correlated and uncorrelated powers provide theoretical bounds

for PN actual such that

PN uncorrelated ≤ PN actual ≤ PN correlated (2.17)
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where the closer PN actual is to PN correlated, the more correlated the signals are.
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CHAPTER 3

DDS PHASE NOISE

3.1 Complete Model

We present the following phase noise model for the combined output of an array

of N identical DDSs, assembled from various reports in the literature

[15, 16, 17, 18, 19]:

LDDS (f, r) =
1

2
r2 · LCk (f) +

1

N

(
r

rR

)2

· L1/f (f, rR) +
1

N
κ (r) · Lfloor (3.1)

In this model, the DDS phase noise, LDDS, consists of contributions from the DDS

source clock LCk, the internal DDS flicker noise L1/f , and the DDS’s DAC noise

floor Lfloor. Ratio r = fout
fCk

relates the DDS output frequency to its source clock

frequency, and ratio rR = fout, R

fCk, R
relates a particular reference output frequency to

the source clock frequency. The source clock contributes a component equal to a

scaled version of its own inherent phase noise [16], while the flicker and floor

components are derived from the DDS circuitry itself and are referenced to a

particular frequency defined by rR. Knowledge of the flicker noise contribution at

any given output and clock frequencies allows determination of the flicker noise for

any other DDS output frequency by scaling by the appropriate r and rR terms [18].

The DAC contributes to the overall white noise floor with a mild

frequency-dependence, κ (r), which is a weak function of r and is specific to a

particular DAC [19]. By combining N identical DDSs in parallel, the uncorrelated
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flicker noise and noise floor components are reduced by a factor of N relative to the

carrier, while the common clock phase noise component is unchanged [15].

Figure 3.1 shows a typical DDS phase noise plot. The horizontal axis is the

offset frequency from the carrier frequency of the source which is typically

represented in Hz. The vertical axis is the signal’s single-sideband phase noise,

L(f), which is represented in dBc/Hz. At lower frequencies, the 1/f flicker noise of

the DAC dominates. However, noise decreases 10 dB per frequency decade so that

the source clock noise may dominate at higher frequencies. The DAC floor noise

also contributes but is typically masked by the source clock phase noise.

Figure 3.1: Typical Phase Noise Plot of a DDS.

3.1.1 Experimental Approach

In order to experimentally verify the phase noise model of (3.1), we used a test

bed consisting of eight of the DDSs described in Section 2.1. Two, four, or eight

DDS channels were combined using microwave power combiners after aligning the

individual channel phases and amplitudes. The experimental arrangement is shown

schematically in Fig. 3.2. Phase noise measurements were made using the phase
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detection technique described previously, yielding a measure of the single-sideband

phase noise, L(f), of the desired signal. For the measurements we present in this

thesis, a variety of very low phase noise OCXOs were used as reference sources. In

order to more easily distinguish the individual contributions of clock, flicker, and

floor noise to the overall phase noise of the DDS output, separate cases where a

single contributor dominates the DDS phase noise were examined.

Figure 3.2: Experimental setup used to validate the model in (3.1).

3.2 Source Clock Noise Contribution

3.2.1 Background

In early designs, the phase noise of most DDSs was dominated by the clock

oscillator phase noise, making contributions from the other components effectively

negligible [19]. Since a DDS is essentially a frequency divider, it divides the phase

noise from its source oscillator as described in Section 2.2.2. There is an additional

factor of one half, from half of the phase noise of the source clock being converted

into amplitude noise and limited in the diode doubler and quadrupler discussed in

Section 2.1.1 [16]. Oscillator performance has improved significantly, though, and
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the phase noise characteristics of current DDSs are generally dominated by internal

flicker noise contributions, masking the effect of the clock noise. However, for

systems with lower-quality clocks, clock phase noise can still have a considerable

impact on DDS performance.

3.2.2 Verification

Considering the case where the clock phase noise dominates LDDS, (3.1) suggests

that, when LCk % L1/f and LCk % Lfloor, then

LDDS ≈ 1

2
r2 · LCk (3.2)

Thus, when a low-stability clock is used, the DDS output phase noise should

represent a scaled version of the clock phase noise, with the scaling factor related to

the ratio of the output and clock frequencies. Taking advantage of the above

simplification, we first aim to verify the relation

LDDS ∝ LCk (3.3)

The DDS array test bed that was used is normally driven by a low noise 100 MHz

OCXO. This 100 MHz source is multiplied by a factor of N = 8 up to the 800 MHz

clock signal required to drive the DDSs, as shown in Figure 3.2. As a result, the 800

MHz clock possesses phase noise higher than that of the 100 MHz OCXO by a

factor of N2 = 64, or 18 dB [20]. The 100 MHz OCXO phase noise is specified to be

-174 dBc/Hz at a 10 kHz offset from the carrier, and, even with the 18 dB increase,

the DDS DAC flicker noise dominates the phase noise of the DDSs, preventing the

observation of the clock noise dependence of LDDS. To overcome this limitation, a

“noisy clock” was constructed by coupling the low-noise 100 MHz OCXO to an
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amplified broadband noise source with a 100 MHz, 3 dB bandwidth. By varying the

attenuation on the noise source, the magnitude of the clock phase noise after

frequency multiplication, LCk, could be arbitrarily tuned and made to be much

larger than the DDS flicker phase noise contribution. We first held fout, the output

frequency, and the source clock frequency, fCk, constant at 80 and 800 MHz,

respectively, and varied LCk by adjusting the attenuation of the broadband noise

source, as described above. As no improvement in phase noise is expected from

combining multiple DDS units with the same source clock, these phase noise

measurements were taken on a single DDS output. As Fig. 3.3 shows, increasing the

attenuation of LCk in increments of 10 dB decreased LDDS by the same amounts,

thus verifying (3.3). The sloped portions of the spectra at low offset frequencies

(foffset < 10 kHz) and high levels of clock noise attenuation (attenuation ≥ 20 dB)

indicate regimes in which L1/f rather than LCk begins to dominate DDS noise. As a

result, further decreases in the clock noise do not affect the measured LDDS in these

regions. The discontinuity seen at the 10 kHz offset frequency is a reproducible

artifact generated by the phase noise measurement system.

Figure 3.4 compares the same DDS output phase noise data for the cases when

clock noise is most dominant—the 0 dB, 10 dB, and 20 dB attenuation

levels—against the measured phase noise of the noisy 100 MHz source used in those

instances. As mentioned above, the 100 MHz source is first multiplied to fCk = 800

MHz, resulting in an 18 dB phase noise increase:

LCk (f) = 82 · L100 MHz (f)

LCk, dB (f) = L100 MHz, dB (f) + 18 dB (3.4)

with LdB defined as LdB = 10 · log10 (L). Next, that 800 MHz signal is used to clock

the DDS. For an 80 MHz DDS output, the model from (3.2) predicts a DDS phase
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Figure 3.3: Phase noise of 80 MHz DDS outputs generated using the noisy clock
configuration of Fig. 3.2 for various noise attenuation settings. The highest levels of
clock phase noise are present for the 0 dB attenuation case, while the lowest levels
of clock phase noise are present in the 50 dB attenuation case.

noise 23 dB lower than that of the 800 MHz clock:

LDDS, 80MHz (f) =
1

2

(
80

800

)2

· LCk (f)

LDDS, 80 MHz, dB (f) = LCk, dB (f)− 23 dB (3.5)

As a result, the 80 MHz DDS output signal is expected to have phase noise 5 dB

lower than that of the original 100 MHz source

LDDS, 80MHz, dB (f) = L100MHz, dB + 18 dB− 23 dB

= L100MHz, dB − 5 dB (3.6)

This predicted 5 dB decrease in phase noise is demonstrated clearly in Fig. 3.4 for

all three source noise levels where LCk dominates DDS phase noise. Further

validation is shown in Fig. 3.5 for the case where the output frequency of the DDS
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Figure 3.4: Phase noise of 80 MHz DDS outputs generated using the noisy clock
configuration of Fig. 3.2 plotted alongside the corresponding variable noise 100 MHz
source phase noise. For all three cases, the 80 MHz DDS outputs exhibit phase
noise about 5 dB less than that of the 100 MHz source.

is set to 100 MHz. Using the same reasoning expressed in (3.4) through (3.6), but

instead substituting 100 MHz for fout, the expected 100 MHz DDS phase noise

output is 3 dB lower than the variable noise 100 MHz source in regions where the

source dominates. This decrease is clearly shown for the cases in Fig. 3.5, where the

DDS phase noise is measured to be approximately 2 to 3 dB lower than the

corresponding 100 MHz source noise.

Finally, the DDS output frequency was increased to 200 MHz and the resultant

phase noise compared to that measured for the fout = 100 MHz case. According to

the model, the ratio of the phase noise at fout = 200 MHz to that at fout = 100

MHz is:
LDDS, 200 MHz

LDDS, 100 MHz
=

f 2
out, 200 MHz

f 2
out, 100 MHz

=
2002

1002
= 4 ≈ 6 dB (3.7)

The expected 6 dB difference is clearly seen in Fig. 3.6 for three different levels of
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Figure 3.5: Phase noise of 100 MHz DDS outputs generated using the noisy clock
configuration of Fig. 3.2 plotted alongside the corresponding variable noise 100 MHz
source phase noise. For all three cases, the 100 MHz DDS outputs exhibit phase
noise about 3 dB less than that of the 100 MHz source.

clock noise. Taken together, the results presented in Figs. 3.3-3.6 validate the LCk

dependence of DDS output phase noise for a single DDS unit captured by the

proposed model.

In the case of multiple DDS units, if the DDS bank is driven by a common clock,

the clock-noise contributions of each DDS unit are fully correlated and no

improvement in overall output phase noise is expected by increasing the number of

DDSs. As a result, the clock-dominated DDS phase noise measured for multiple

combined outputs should be the same as that measured for a single DDS output. In

order to confirm this, the phase noise of one, two, and four phase-aligned and

combined channels was measured at fout = 100 MHz. Appropriate amplification and

attenuation were used so as to normalize the input power to the phase noise

measurement system to approximately 10 dBm in all cases for optimum phase noise

measurement system performance. The results of these measurements are plotted in

22



10
2

10
3

10
4

10
5

10
6

−140

−130

−120

−110

−100

−90

−80

Offset Frequency (Hz)

P
h
a
se

 N
o
is

e
 (

d
B

c/
H

z)

 

 

200 MHz 10 dB
100 MHz 10 dB
200 MHz 20 dB
100 MHz 20 dB
200 MHz 30 dB
100 MHz 30 dB

L
Ck

 Attenuation Setting: 10 dB

20 dB

30 dB

{
{
{

Predicted 6 dB
difference

Figure 3.6: Comparison of the phase noise of the DDS outputs at 200 and 100 MHz.
The 6 dB difference expected due to the r scaling factor is evident for all three
levels of clock noise utilized.

Fig. 3.7 for two levels of source clock phase noise. As the figure shows, increasing

the number of DDSs does not appreciably alter the DDS phase noise in regions

dominated by the clock contribution.

3.3 Flicker Noise Contribution

3.3.1 Background

By definition, flicker noise has a 1/f character, which means that its magnitude

drops 10 dB per decade of frequency [21]. Flicker noise in DDSs is the result of

internal sources of noise in the biasing circuit and the switching transistors in the

DAC [18]. The level of this flicker noise depends on the statistics of the noise

processes in the particular DAC used in the DDS. Once the flicker noise is measured

at a single reference frequency, the flicker noise for other frequencies can be

calculated from this reference flicker noise by the frequency multiplication process
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Figure 3.7: Comparison of the phase noise output of the DDS for various numbers
of phase-aligned and combined channels generated using two different levels of
attenuation of 100 MHz source phase noise. For a given clock phase noise,
increasing the number of DDSs in parallel does not improve the combined output
phase noise because the common clock noise dominates LDDS, as predicted by (3.2).

described in Section 2.2.2.

3.3.2 Verification

This work next considers the case where flicker noise from the DAC dominates

the total phase noise of the DDS array, that is L1/f % LCk and L1/f % Lfloor.

Equation (3.1) becomes

LDDS ≈ 1

N

(
r

rR

)2

· L1/f (3.8)

where L1/f is the flicker noise measured at the reference frequency ratio rR. Thus,

for the case when DAC flicker noise dominates, the DDS output noise will be

directly proportional to L1/f with a scaling factor dependent on the number of

DDSs present and the output and clock frequencies. Taking advantage of this

simplification, the phase noise improvement expected by implementing an array of
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parallel DDSs was verified first, specifically:

LDDS ∝ 1

N
L1/f (3.9)

The variable noise source was replaced with the original low noise 100 MHz OCXO

and the phase noise of N=1, 2, 4, and 8 phase-aligned and combined channels were

measured at fout = 100 MHz. As Figure 3.8 shows, each doubling of the number of

channels decreased the phase noise by 3 dB, in accordance with the expected 1/N

scaling. The frequency-dependent scaling of the flicker noise term can be verified by
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Figure 3.8: Comparison of phase noise output of the DDS at fout=100 MHz for
N=1, 2, 4, and 8 phase-aligned and combined channels. The expected 1/N decrease
in phase noise for N -DDS arrays is clearly evidenced.

comparing the DDS phase noise at different output frequencies.

According to (3.8), for a given flicker-dominated DDS-array, the phase noise

characteristics LDDS1 and LDDS2 recorded at output frequencies fout1 and fout2,

respectively, are related by

LDDS1 =

(
fout1
fout2

)2

· LDDS2 (3.10)
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which assumes a common clock frequency for both measurements. Selecting

frequencies fout1 = 80 MHz and fout2 = 100 MHz yields

LDDS, 80 MHz =

(
80

100

)2

· LDDS, 100 MHz

LDDS, 80 MHz, dB = LDDS, 100 MHz, dB − 2 dB (3.11)

for any N . Figure 3.9 shows LDDS, 80 MHz, dB plotted alongside

(LDDS, 100 MHz, dB − 2 dB) for varying values of N . The phase noise curves measured

at 80 MHz overlap nearly exactly with the shifted 100 MHz phase noise curves,

validating the predicted frequency scaling of the flicker noise contribution for all

combinations of DDSs measured. Deviations in the measured phase noise at low

offset frequencies (foffset < 1 kHz) likely arise from differences in the phase lock-loops

used in the phase noise measurement setup for the 80 MHz and 100 MHz oscillators.

Further verification of the flicker noise scaling is seen by comparing phase noise

measurements taken at fout1 = 200 MHz to the reference measurements at fout2 =

100 MHz. According to (3.10), the phase noise relationship between these two

frequencies is predicted to be

LDDS, 200 MHz =

(
200

100

)2

· LDDS, 100 MHz

LDDS, 200MHz, dB = LDDS, 100MHz, dB + 6 dB (3.12)

Similar to Figure 3.9, Figure 3.10 plots the measured DDS phase noise at fout1 =

200 MHz alongside (LDDS, 100 MHz, dB + 6 dB). While the overlap is not quite as good

as that seen for the 100 MHz and 80 MHz outputs, the measured values still are

within about 2-3 dB of the values predicted by frequency scaling, further confirming

the validity of the proposed model. The source of the increased deviation is

currently unknown, but may be related to the stability of the 200 MHz reference

oscillator or the phase-lock technique implemented in the measurement system.
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Figure 3.9: Plot of phase noise of DDS output at 80 MHz (blue curves) and DDS
output at 100 MHz shifted downward by 2 dB (red curves). The two sets of
measurements overlap very well, confirming the expected frequency scaling of the
L1/f contribution to DDS phase noise.
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3.4 Floor Noise

The floor noise arises from sources of thermal noise in the DAC, including

resistors, transistors, and any other lossy components [19]. In the DDS array we

used, the DAC floor noise contribution was negligible at the offset frequencies up to

10 MHz measured, and, unlike the clock noise, it could not easily be artificially

increased to dominate the flicker noise. As a result, its contribution to the overall

DDS noise could not be verified with the present measurement capabilities.

However, Lfloor is expected to be an identical but uncorrelated noise process among

multiple DDS units, and we expect the noise floor contribution to LDDS, like the

uncorrelated flicker-contribution, to scale as 1/N in a DDS array [15].

3.5 Conclusion

In summary, this chapter has presented a concise, usable model for the phase

noise of an N -DDS parallel array. The expected dependence and frequency scaling

of the output phase noise on clock and DAC flicker noise contributions has been

experimentally verified using a custom-designed DDS test bed. Furthermore, we

have demonstrated that combining multiple DDSs yields the predicted 1/N phase

noise improvement in flicker noise contribution, but has no effect when the noise is

dominated by the common clock contribution. The experimental validation of the

proposed phase noise model suggests its utility in the design and analysis of systems

requiring DDS waveform generation and confirms the effectiveness of parallel DDS

arrays for high-performance agile frequency synthesis.
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CHAPTER 4

SPURIOUS ERRORS

Because of many qualities inherent to its architecture, a DDS does not generate

perfect sinusoids. Therefore, there is always some error between the actual output

and an ideal output. According to Fourier theory, any periodic error appears as a

sum of delta functions in the frequency domain. These delta functions are referred

to as “spurs.” In this section, we investigate the level of correlation of three different

types of DDS output spurs in a DDS array: phase truncation spurs, quantization

noise spurs, and quantizer nonlinearity spurs.

Phase truncation spurs are caused by the truncation of the LSBs of the PA,

which is done to reduce the LUT to a manageable size. Quantization noise spurs are

caused by the error incurred by rounding the DAC input signal to the limited

number of output states in the DAC. Quantizer nonlinearity spurs arise from the

error between the actual output levels in a DAC and the ideal output levels.

The mechanisms for generating all three of these error types are deterministic.

Assuming that each DDS in an array is architecturally identical, is fed the same

FCW, is initialized to the same starting PA value, and has its outputs

phase-aligned, the spur-generating errors occur in an identical manner, producing

identical spurs in each channel. Therefore, all of the spurs should sum coherently at

the output, resulting in no net reduction in spur magnitude due to DDS

parallelization. The following sections examine individually each of these spurs and

their level of correlation in our DDS array. A more detailed introduction to each

error type is provided, as well as the results from our testbed measurements.
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4.1 Phase Truncation Spurs

Phase truncation spurs are the primary source of spectral impurity inherent to

direct digital synthesis. The other significant errors are a result of the DAC and are

not specific to the DDS architecture itself. As was noted, the mechanism that

generates the phase truncation spurs is deterministic, and thus theoretically the

spurs should be perfectly correlated at the output of a DDS array; consequently,

there should be no spur-free dynamic range (SFDR) gain from combining multiple

channels in an array.

4.1.1 Spur Origin

In practical DDS designs, the LUT described in (2.4) is implemented with a

finite-sized ROM with limited output precision. Often several of the LSBs of the PA

are truncated to prevent the size of the LUT from becoming unwieldy. For example,

the DDS architecture used in this thesis has a 32-bit PA. Connecting this to an

equally sized LUT would require a 32-bit ROM. Each entry in the ROM is 14 bits

so as to use the entire dynamic range of the DAC. The resulting ROM would be 7

gigabytes in size, which is prohibitively expensive for most systems. Truncating the

15 LSBs of the PA reduces the size by a factor of 215 to 224 kilobytes, a much more

reasonable and affordable size. Further steps utilize the symmetry of a sinusoid to

reduce the size of the LUT by a factor of four. Although this phase truncation is

practical, it creates a periodic error that manifests itself as spurs in the frequency

domain [9]. Figure 4.1 shows an example of a phase-truncated signal. The limited

precision of the entries of the LUT also causes quantization spurs [22].
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Figure 4.1: Example of the output of the LUT for a phase-truncated signal.

4.1.2 Phase Truncation Spectrum

Consider a DDS with an M -bit FCW having value k and a W -bit LUT as shown

in Fig. 4.2. We then define the number of active bits, R, to be the number of bits M

minus the number of trailing zeros in the FCW. The FCW and the number of

truncated bits, R−W , determine the characteristics of the phase truncation spurs.

Hence, an M -bit FCW whose M −R LSBs are zeros is effectively the same as an

R-bit FCW and will be treated as such in the following analysis [23]. In our initial

analysis, we will also assume that the decimal value of the discarded bits is equal to

one. That is, the discarded bits (in other words, the (W + 1)- to R-th bits) are all

equal to zero except for the R-th MSB (see Fig. 4.2). This assumption, which does

not have any effect on the magnitude of the signal or the spurs, is addressed in [9].

Taking the previous assumptions into account, (2.4) becomes

s(n) = sin

(
2π

k

2R
n

)
(4.1)
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Figure 4.2: Example FCW in which M is the number of bits in the PA; R is the
number of active bits; M minus the number of trailing zeroes; W is the number of
bits in the LUT; and R−W is the number of truncated bits.

where k = FCW1:R, the value of the R MSBs of the original FCW. We define the

R-point DFT of (4.1) as

S(k) =
2R−1∑

n=0

s(n)e−j 2π
2R

nk (4.2)

Since the R−W LSBs of the condensed PA are truncated, the output s(n) from

(4.1) is constant for every 2R−W samples. In order to analyze the spectrum of s(n),

we examine r(n), a similar sequence without the repeated values, defined as

r(n) = s(2R−Wn) (4.3)

We then define this sequence’s W -point DFT as

R(k) =
2W−1∑

n=0

r(n)e−j 2π
2W

nk (4.4)
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We can expand (4.2) into

S(k) =
2W−1∑

n=0

s(2R−Wn)e−j 2π
2R

(2R−Wn)k +
2W−1∑

n=0

s(2R−Wn+ 1)e−j 2π
2R

(2R−Wn+1)k +

...+
2W−1∑

n=0

s(2R−Wn+ 2R−W − 1)e−j 2π
2R

(2R−Wn+2R−W−1)k (4.5)

Returning to (4.3), we also note that

r(n) = s(2R−Wn) = s(2R−Wn+ 1) = ... = s(2R−Wn+ 2R−W − 1) (4.6)

After placing all of the terms that do not depend on n outside of the summation,

(4.5) becomes

S(k) =
(
1 + e−j 2π

2R
k + e−j 2π

2R
(2)k + ...+ e−j 2π

2R
(2R−W−1)k

)

︸ ︷︷ ︸
V (k)

2W−1∑

n=0

r(n)e−j 2π
2W

nk

︸ ︷︷ ︸
R(k)

(4.7)

where V (k) is a finite geometric series that can be rewritten

V (k) =
1− e−j 2π

2W
k

1− e−j 2π
2R

k
(4.8)

Hence, from (4.7) and (4.8), it is seen that the spectrum S(k) is composed of 2R−W

replicas of R(k) windowed by V (k) [22, 23]. One of these is the desired output

signal, while the other 2R−W − 1 replicas appear as spurs in the positive frequencies

(bins ranging from 0 to 2R−1). From this analysis, we can establish several baseline

facts about phase truncation spurs. First, the worst-case (i.e. largest) spur

magnitude occurs when R−W = 1, which means the R-th MSB in k is one and

there is only a single phase truncation spur in the signal spectrum. Second, the

magnitude of the worst-case phase truncation spurs decreases by 6 dB for each bit

of increase in the size of W due to its dependence on V (k).
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4.1.3 Testing Phase Truncation Spur Correlation in an Array

To assess the level of phase truncation spur correlation in DDS arrays, we made

use of 14 channels of our testbed. By evaluating the relative phases of truncation

spurs on all channels, the level of spur correlation across channels was assessed. The

LUT size, W , was varied by using a built-in feature of the JHU/APL DDS testbed,

and output frequencies were carefully selected to result in exact truncated word

sizes. To quantify the correlation, we define a meaure called “relative phase.” The

relative phase of a spur is equal to the phase of the phase truncation spur minus the

phase of the fundamental signal. In a calibrated array of DDSs, the phases of the

fundamentals are aligned, and so the statistics of this relative phase give us direct

insight into the level of phase truncation spur correlation, as well as the potential

for SFDR gain, in the combined output of an N -channel DDS array. In order to

measure this relative phase, we took ten captures of the outputs of 14 DDSs for

several different values of k. For each capture, we reinitialized the value of the PA

to zero. Table 4.1 shows all of the W and k values measured, as well as their

corresponding frequencies. We chose the k that produced the worst-case spur for

each value of W , which was calculated using the algorithm from [22].

Table 4.1: W and k values (truncated portions after the decimal) measured along
with their corresponding frequencies in MHz.

W k Frequency (MHz)

4 0011.1 87.5
6 001100.1 78.125
8 00110000.1 75.78125
10 0011000000.1 75.1953125

Figure 4.3 shows a histogram plotting the measured relative phase of the worst

case spur for all 14 channels and 10 runs in 10◦-wide bins. As is shown, the relative

phases clump heavily together for each channel. We believe the 180◦ separation
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between measurements on a given channel seen occasionally in the W = 4 case is an

artifact arising from the dual PA architecture. For the W = 10 case, the noise

power starts to degrade the relative phase measurement, causing some spreading in

the phase. Most importantly, however, though the relative phase is constant across

runs for a given channel, the relative phases of each channel vary widely, which

suggests that there is some other variable determining the relative phase which

varies from channel-to-channel.
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Figure 4.3: Plot of the relative phase measurements for 10 captures of a 14-channel
array of DDSs for four different output frequencies as determined by the FCW, k.

4.1.4 Investigating the Starting Relative Phase

In the above measurements, subsequent runs were taken without powering down

and powering up the DDSs in between runs. It is possible that some timing element

in the FPGA during power up or initialization is responsible for setting the relative

spur phase. This timing element could vary across channels, accounting for the

variation in relative spur phase we observed. In order to examine this possibility, we
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took an additional set of measurements in which we powered down and powered up

the DDSs between each run. For this experiment, we took 32 captures of 14 DDS

channels and chose W = 4 with the k value = 0011.1, corresponding to an output

frequency of 87.5 MHz, in order to have the maximum spur-to-noise ratio possible.

In between each capture, we turned off the power to each DDS, turned it back on,

and then reinitialized it. Figure 4.4 shows a histogram plotting the measured

relative phase in 10◦-wide bins. As is shown, after power reset, the relative phase of

the phase truncation spur is random even within a given channel with a near equal

distribution for all possible phases.
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Figure 4.4: Plot of the relative phase measurements for 32 captures of a 14-channel
array of DDSs for output frequency equal to 87.5 MHz.

4.1.5 Discussion

Analysis of the results from these experiments sheds some light on the

correlation of phase truncation spurs in real DDS arrays. The initial experiment

showed that, as expected, relative phase was constant for a given channel and did

not change with LUT size. However, relative phase did vary across channels. This
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suggests that spurs are not correlated across channels and that an increase in SFDR

for phase truncation spurs is possible in this array. This differs from theory, which

predicts total correlation and no SFDR gain. A constant relative phase for a given

channel suggests there is some deterministic component which varies across channels

but not across runs.

The second experiment eliminated this constant channel relative phase by

resetting the power to the DDSs before each run. These results suggest that the

primary determinant of phase truncation spur relative phase is some parameter that

is established upon FPGA initialization. Our current model does not account for it,

but Fig. 4.4 suggests that it is a uniform random variable. It is possible that other

DDS arrays that implement their PAs, LUTs, and buffers in a different way, perhaps

with an application-specific integrated circuit (ASIC), might not have the same

randomness, but the result of the second experiment establishes the potential for

achieving a SFDR gain for phase truncation spurs. Future work might be able to

identify and perhaps control the mechanism in the FPGA that determines the

relative phase. If identified, this mechanism could be used to the designers’

advantage to purposely decorrelate phase truncation spurs and maximize SFDR

gain.

4.2 Quantization Noise Spurs

4.2.1 Spur Origin

The analog output of a DAC is a quantized representation of the desired output

signal; therefore, it does not have an ideal spectrum. Rather, its spectrum is

composed of a fundamental tone at the desired output frequency, as well as

harmonics due to signal distortion [24]. These harmonics alias with respect to the

DDS’s source clock, so they can be close to the fundamental frequency of the signal.
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These aliased harmonics appear as a very large number of spurs, the collection of

which is referred to as “quantization noise.” Quantization noise is a form of spectral

impurity that is inherent to a DAC, a fundamental component of the DDSs. In this

section, we study the correlation of quantization noise among different channels in

an array of DDSs by doing a comparison of the actual summed output power to the

theoretical correlated and uncorrelated powers as described in Section 2.3.

Determining the level of correlation among channels allows us to analyze the

potential increase in signal-to-quantization noise ratio (SQNR) achieved by

combining multiple channels in an array. Theoretically, the quantization noise for

each DAC should be perfectly correlated, since the outputs of the aligned channels

should have the same amplitude and suffer the same quantization error; however,

the remaining calibration error and spectral differences across channels, such as

phase truncation errors, might at least partially decorrelate the quantization noise.

This partial decorrelation would allow for some SQNR gain from combining multiple

DDS channels in an array.

4.2.2 Experimental Setup

We measured the quantization noise power in a 14-channel DDS array using the

setup shown in Fig. 4.5. We varied the resolution of the DDSs by changing the bit

mask before the buffer as described in Section 2.1.4. The DDSs were operated with

no amplitude attenuation so as to use the entire dynamic range of the DAC. The

DDSs’ full-scale power is well-below the full-scale power of the ADCs so any

potential ADC nonlinearities are minimized. No additional amplifiers or filters were

introduced in order to reduce the impact of auxiliary electronics. In previous

measurements, the DDSs were phase-aligned to about 170 µrad so as to fully

correlate the fundamental outputs of the DDSs [10], and this same phase alignment

was performed. The output frequencies of the DDSs were chosen to be in the second
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Nyquist zone of the ADCs (60 MHz to 120 MHz). The exact experimental

frequency (and the corresponding FCW) was an available variable which was chosen

to fall in the center of an output FFT bin for computational ease.

Figure 4.5: Quantization noise experimental setup includes 14 DDS channels
phase-aligned at the input to the ADCs. In these measurements, the DDS DAC
word length, D, was varied.

4.2.3 Calculation of Quantization Noise Power

We calculated the quantization noise power by first performing an FFT on the

digital output of each channel’s ADC and then squaring the FFT to yield the power

spectrum. We used a flat top window on the digital output and compensated for the

window loss in order to improve our amplitude accuracy. We next zeroed out the

largest bin and its 15 surrounding bins on each side to remove the fundamental

signal power. We then summed the linear (not decibel) values of the remaining bins

to find the total noise power in each channel, and assumed the quantization noise

was well above the other sources of noise. We then used the formulas in Section 2.3

to calculate the correlated and uncorrelated powers, PN correlated and PN uncorrelated,

respectively. To calculate the actual measured power, as in (2.16), we summed the
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digital voltage outputs from all of the ADCs and then calculated the quantization

noise power as we did for the other channels. Each output stream’s variance was

normalized so as to make the power of the fundamental signal equal for every

stream of data. We performed this calculation for DAC word lengths D = 2 to

D = 13 to generate a plot like the example in Fig. 4.6. The blue line shows the

Figure 4.6: Example DAC power correlation plot. The blue line shows the
theoretical correlated power, the green line shows the theoretical uncorrelated
power, and the red line shows the actual measured power.

theoretical correlated power, the green line shows the theoretical uncorrelated

power, and the red line shows the actual measured power. Both the theoretical

correlated and uncorrelated powers decrease as D increases until the thermal noise

floor is reached. The relative position of the red line with respect to the blue and

green lines gives insight into the actual correlation of the quantization noise power
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for any given D; the closer the measured values are to the blue line, the more

correlated the noise; the closer they are to the green line, the more uncorrelated.

Once the thermal noise limit is reached, any analysis of the correlation of the

quantization noise power is inconclusive.

4.2.4 Results

The results of this measurement at four different output frequencies are shown in

Fig. 4.7. For very high DAC resolutions, our results were inconclusive because

uncorrelated thermal noise dominated our measurements; however, our analysis

shows that the measured quantization noise power is fairly decorrelated among DDS

channels for all of the lower DAC resolutions. This trend was independent of the

output frequency of the DDS. The measured and uncorrelated powers never quite

overlap after reaching the thermal noise limit, which we attribute to a small level of

correlation in the ADC noise power between channels and not to the DDSs. These

results suggest that it may be possible to construct a large array of low-bit DACs

which generate a combined signal with very high SQNR.

4.2.5 Discussion

Despite theoretical predictions of fully correlated DDS quantization noise, the

measured quantization noise power of the combined output signal suggests that the

quantization noise of individual DDSs is mostly decorrelated for all values of D.

The cause of the discrepancy between measurement and theory is unclear, but we

note that the relative phases of the quantization noise spurs determine the extent of

quantization noise power correlation among the elements of the array. It is possible

that small discrepancies among the channels could serve to decorrelate the

quantization noise as was observed for the phase truncation spurs. Nevertheless, the
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Figure 4.7: Quantization noise power results for four different frequencies.

results suggest that a large array of low-bit DACs that are amplitude and

phase-aligned could yield high SQNR without a huge penalty from correlated

quantization noise.

4.3 Quantizer Nonlinearity Spurs

4.3.1 Spur Origin

Every DAC has a transfer function that converts a digital code to an analog

signal. The ideal DAC transfer function maps the digital codes to evenly spaced

slices of the full-scale range of the DAC. Quantizer nonlinearities result from the

imperfections in the design and fabrication of the DAC such that there is an error

between the ideal output levels of a DAC and its actual output levels. This error is

quantified with two metrics, differential nonlinearity (DNL) error and integral

nonlinearity (INL) error. A DNL error is defined as the difference between the

actual spacing between adjacent digital values (values differing by 1 LSB) of the
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DAC and the ideal spacing. An INL is the deviation of an actual DAC transfer

function from a straight line. This straight line can either be the best linear fit of

the transfer function or it can be a straight line passing through the endpoints of the

DAC’s transfer function [25]. According to the data sheet for the Analog Devices

AD9736 DAC used in our DDS array, the worst case DNL and INL errors are ±2.1

LSBs and ±5.6 LSBs, respectively [26]. The result of these errors is that the transfer

function of the DAC is nonlinear, causing the output to contain both the desired

fundamental output as well as harmonic distortion. Harmonic distortion manifests

itself as harmonically related spurs in the output of the DAC whose amplitudes are

not readily predictable. However, their location is predictable since they appear at

multiples of the fundamental frequency. The harmonics whose frequencies are higher

than half of the DDS clock frequency alias back onto the first Nyquist zone [27].

4.3.2 Experimental Setup

For the normal operating setting of the DDSs, D = 14 and W = 17, the phase

truncation spurs and the quantization noise spurs are negligible compared to the

quantizer nonlinearity spurs. The DACs’ quantizer nonlinearities could not be

measured directly using the ADCs as signal detectors because the ADC

nonlinearities can overlap with the DAC harmonics in the frequency ranges of

interest. Instead, we used an Agilent E4440A spectrum analyzer with a flat top

window to measure the power of the fundamental and its harmonics for each channel

in order to calculate the theoretical correlated and uncorrelated power. To calculate

the actual correlated power, we then combined eight channels together with an

eight-way Wilkinson power combiner, the largest we had available. We phase-aligned

the channels by shutting all but the first channel and a second channel and then

incrementing or decrementing the second channel’s phase accumulator to achieve

maximal destructive interference between the two channels. After finding this point,
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we added 180 degrees to the second channel’s phase accumulator to place the two

channels in-phase. We then verified the expected gain, 20 log10(2) = 6 dB, increase

in power over the single channel’s power. After doing this for all eight channels, we

combined all eight DDSs and verified the expected 20 log10(8) = 18 dB gain in

power over the single channel’s power. With this alignment complete, we measured

the power of the fundamental and harmonics, adjusting for the insertion loss of the

power combiner, which we measured for each frequency with a network analyzer.

4.3.3 Results

Results from these measurements for many harmonics of an output frequency of

20.5 MHz are plotted in Fig. 4.8. The plot shows the theoretical correlated and

uncorrelated powers along with the actual measured power from the combiner for

each harmonic measurement. As is shown in the plot, there is a strong level of

correlation for the second and third harmonics. In the cases of the higher level

harmonics, we see more erratic behavior. This is likely due to the higher order

harmonics being more sensitive to noise because their magnitudes are lower and,

therefore, closer to the thermal noise floor of the signal. Figure 4.9 shows the

correlation of the second and third harmonics for multiple frequencies.

4.3.4 Discussion

As the measurements suggest, the lowest-order quantizer nonlinearity harmonics

are highly correlated across channels for all tested frequencies. As a result, there is

little benefit to using an array of DDSs to decrease the effect of in-band quantizer

nonlinearities. Instead, system designers must address the problem of these spurs

using alternate methods, such as careful frequency planning, to ensure that

high-power harmonics (particularly the second and third) do not alias into the
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frequency band of interest and can be adequately filtered out [27]. Channels could

also be phased in such a way to cancel specific higher order harmonics.
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CHAPTER 5

DISCUSSION

5.1 Conclusion

The work reported in this thesis demonstrates that there are many potential

performance benefits to using an array of DDSs. Our investigation of the phase noise

of a DDS array indicates that the contribution to the phase noise from the DACs

can be decreased to a desired level by using a large enough number of channels. In

such a system, the phase noise qualities of the source clock and the system cost and

complexity will be the main limitations on the phase noise of the DDS array.

Our study of phase truncation spurs suggests that, at least in our system, the

phase truncation spurs are uncorrelated, contrary to the theoretical prediction. We

believe this decorrelation is due to the existence of an unidentified mechanism in our

DDS array that is unaccounted for in our current operational DDS model. This

mechanism, likely due to some timing element in the FPGA, causes some

randomness in the relative phases of the truncation spurs from channel to channel

each time the DDS array is powered up. This randomness decorrelates the phase

truncation spurs, opening the potential for SFDR gain from using a DDS array.

Our analysis of the correlation of quantization noise spurs in an array of DDSs

shows that the total quantization noise power of each DDS channel is uncorrelated

for nearly all values of DAC output bits. This suggests that a near N gain in SQNR

is possible for an N -channel array of DDSs. This gain will be most apparent for

low-bit DACs in which quantization noise is notably higher than the thermal noise
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contribution.

Lastly, our measurements of the correlation of quantizer nonlinearity spurs

demonstrate that the second and third harmonics are highly correlated across

channels for all frequencies tested. As a result, alternate methods of harmonic spur

management must be employed.

5.2 Future Work

Extensions to and modifications of the hardware used in this thesis work would

open up several avenues for future research in the field of noise and spur correlation

in DDS arrays. Increasing the maximum offset frequency of the phase noise

measurement system may allow direct measurement of the DDS floor noise and

verification of its contribution to the DDS array’s phase noise. Developing the

capability to directly observe the instantaneous value of the PA for each DDS

channel would facilitate a more thorough analysis, possibly enabling the

identification of the mechanism responsible for spur decorrelation. Developing a

DDS testbed with more than 14 channels may provide more insight into the level of

decorrelation of the total quantization noise from the DACs. Lastly, developing a

way to sample the entire time series for the quantizer nonlinearity spur

measurements of a DDS without being obscured by the ADC nonlinearities may

allow for a more thorough analysis of the correlation of harmonics among the

channels of a DDS array.
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